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Abstract— The Jet Propulsion Laboratory has developed the 
Hyperspectral Thermal Emission Spectrometer (HyTES). It 
is an airborne pushbroom imaging spectrometer based on 
the Dyson optical configuration. First low altitude test 
flights are scheduled for later this year.  HyTES uses a 
compact 7.5-12m hyperspectral grating spectrometer in 
combination with a Quantum Well Infrared Photodetector 
(QWIP) and grating based spectrometer. The Dyson design 
allows for a very compact and optically fast system (F/1.6). 
Cooling requirements are minimized due to the single 
monolithic prism-like grating design. The configuration has 
the potential to be the optimal science-grade imaging 
spectroscopy solution for high altitude, lighter-than-air 
(HAA, LTA) vehicles and unmanned aerial vehicles (UAV) 
due to its small form factor and relatively low power 
requirements. The QWIP sensor allows for optimum spatial 
and spectral uniformity and provides adequate responsivity 
which allows for near 100mK noise equivalent temperature 
difference (NEDT) operation across the LWIR passband. 
The QWIP’s repeatability and uniformity will be helpful for 
data integrity since currently an onboard calibrator is not 
planned. A calibration will be done before and after eight 
hour flights to gage any inconsistencies. This has been 
demonstrated with lab testing. Further test results show 
adequate NEDT, linearity as well as applicable earth science 
emissivity target results (Silicates, water) measured in direct 
sunlight.  
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1. INTRODUCTION 

The Jet Propulsion Laboratory (JPL) has a long history in 
developing science-grade imaging spectrometers for remote 
sensing applications. Examples include the airborne visible 
infrared imaging spectrometer [1] (AVIRIS) and more 
recently a compact Offner type imaging spectrometer called 
the Moon Mineralogical Mapper [2] (M3) which recently 
completed its mission in orbit around the moon onboard  
India’s Chandrayaan-1.  

In late 2006, JPL began the development of a breadboard 
thermal infrared pushbroom spectrometer named the 
Quantum Well infrared photodetector Earth Science Testbed 
(QWEST) as an end-to-end laboratory demonstration of 
both the thermal Dyson spectrometer as well as the quantum 
well infrared focal plane technology. The testbed is a 
precursor to the airborne version under development 
referred to as the hyperspectral thermal emission 
spectrometer (HyTES) and funded by the NASA Instrument 
Incubator Program (IIP). The current effort brings together 
numerous in-house specialties such as optical design and 
general spectrometer alignment optimization, precision slit 
fabrication, high efficiency and low scatter concave 
diffraction grating design and fabrication, precision 
mechanical and machining capability and quantum well 
infrared photo detectors (QWIP) focal plane arrays.  

The long wave infrared (LWIR) is typically expressed as the 
wavelength range between 7 and 14 µm. Our current 
demonstration instrument operates from 7.5 to 9.5 µm and 
the planned airborne instrument will operate from 7.5 µm to 
12 µm. Spectral information from this wavelength range is 
extremely valuable for  Earth Science research. The airborne 
instrument will be used in support of the HyspIRI mission 
(hyspiri.jpl.nasa.gov) which was recently recommended by 
the National Research Council in their Decadal Survey. The 
LWIR component of the HyspIRI mission will address 
science questions in five main science themes:  

Volcanoes  

What are the changes in the behavior of active volcanoes? 
Can we quantify the trace gases (CO2) released into the 
atmosphere by volcanoes and estimate its impact on Earth's 
climate? How can we help predict and mitigate volcanic 
hazards?  

Wildfires  

What is the impact of global biomass burning on the 
terrestrial biosphere and atmosphere, and how is this impact 
changing over time? A LWIR sensor will allow us to 
measure temperature, emissivity, radiative flux, burn 
products, hot spots, etc. 

Water Use and Availability  

As global freshwater supplies become increasingly limited, 
how can we better characterize trends in local and regional 
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performance, install the broadband 8-12m QWIP focal 
plane array, perform field work to support the earth science 
testbed effort and begin the transition to a cryocooler 
airborne instrument. 

Super lattice detectors [25] which are also being fabricated 
at JPL have the potential of offering similar uniformity but 
with a higher operating temperature and higher QE. Future 
Dyson platforms may be able to take advantage of this 
technology as well.   
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